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A local radial point interpolation method (LRPIM) is presented to deal with
boundary-value problems for free vibration analyses of two-dimensional solids. Local weak
forms are developed using weighted residual method locally from the partial di!erential
equation of free vibration. A technique to construct shape functions using radial function
basis is proposed. The shape functions so formulated possess delta function property.
Essential boundary conditions can be implemented with ease as in the "nite-element
method. Some important parameters on the performance of LRPIM are also investigated
thoroughly. Numerical examples for free vibration analyses of two-dimensional solids to
demonstrate the validity and e$ciency of the present LRPIM are presented.
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1. INTRODUCTION

Meshless method has attracted more and more attention from researchers in recent years,
and it is regarded as a potential numerical method in computational mechanics. In the
meshless method, it does not require a mesh to discretize the problem domain, and the
approximate solution is constructed entirely based on a set of scattered nodes. Several
meshless methods, such as di!use-element method (DEM) [1], element-free Galerkin (EFG)
method [2], reproducing kernel particle method (RKPM) [3], point interpolation method
(PIM) [4], point assembly method (PAM) [5], boundary node method (BNM) [7] and
boundary point interpolation method (BPIM) [6] have been proposed and achieved
remarkable progress in solving a wide range of static and dynamic problems. The coupled
techniques between meshless methods and other established numerical methods are also
developed [8, 9]. The above-mentioned meshless methods are all based on global weak
forms or boundary integral equation (BIE). In particular, these meshless methods are
&&meshless'' only in terms of the interpolation of the "eld or boundary variables, as
compared to the usual "nite-element method (FEM) or boundary-element method (BEM).
These meshless methods have to use background cells to integrate a weak form over the
problem domain and boundary.

Two &&truly'' meshless methods, called the meshless local Petrov}Galerkin (MLPG)
method and the local point interpolation method (LPIM), have been developed based on
local weak forms. The MLPG [10, 11] method is based on a local weak form and moving
least-squares (MLS) approximation. In the MLPG, an integration method in
a regular-shaped local domain (such as spheres, rectangular, and ellipsoids) is used. The
MLPG method does not need any &&element'' or &&mesh'' for both "eld interpolation and
0022-460X/01/360029#18 $35.00/0 ( 2001 Academic Press
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background integration. The MLPG method has been used in static [11] and vibration
analyses [12] of solids. However, in MLPG method, it is di$cult to implement essential
boundary conditions and it is computationally expensive due to the use of MLS
approximation.

An LPIM has been proposed for two-dimensional solids by Liu and Gu [13], in which
a set of points is used to represent the problem domain. A technique to construct
polynomial interpolation functions with delta function property is proposed. A local weak
form is developed using the weighted residual method locally. The LPIM is also a truly
meshless method, in which essential boundary conditions can be implemented as easily as in
the FEM due the shape functions having delta function property. The computation cost of
LPIM is much lower than that of MLPG because of the simple interpolation and the
reduction in computation of the sti!ness matrix. The LPIM has been used for 2-D
elasto-statics [13] and 1-D fourth order thin beam analyses [14]. Very good results have
been obtained.

However, like other methods that use polynomial as basis functions, it is tricky to choose
the basis for interpolation in polynomial basis LPIM [15]. If an inappropriate polynomial
basis is chosen, it may result in a badly conditioned matrix, which could be even invertible.
Some strategies have been developed for alleviating this problem [4, 15]. Using radial
functions as the basis in LPIM is a good alternative.

The use of radial basis function for scattered data interpolation began as early as the
beginning of 1960s. In recent years, many mathematicians and mechanicians noticed its
unique advantages, and used it to solve partial di!erential equations [16}18]. Using radial
basis in LPIM can o!er new advantages. A local radial point interpolation method
(LRPIM) has been proposed by Liu et al. [19]. In LRPIM, the point interpolation using the
radial function basis is utilized to construct shape functions with delta function property.
The LRPIM can give full play of the advantage of LPIM. In the meantime, the LRPIM
overcomes disadvantages of LPIM because the interpolation using radial function basis is
stable and #exible. The LRPIM has been for two-dimensional static analyses [19]. Very
good results have been obtained.

LRPIM for free vibration analyses of two-dimensional solids and structures are proposed
in this paper to extend the LRPIM method to free vibration analyses. Local weak forms are
developed using weighted residual method locally from the partial di!erential equation of
free vibration. The point interpolation using radial function basis is used to obtain the shape
functions. The shape functions so formulated possess delta function property. Therefore, the
essential boundary conditions can be easily implemented in vibration analyses. Frequencies
and eigenmodes are obtained by solving an eigenvalue equation.

Programs of the LRPIM have been developed in FORTRAN, and a number of numerical
examples of free vibration analyses are presented to demonstrate the convergence, validity
and e$ciency of the present methods. The e!ects of some important parameters on the
performance of LRPIM are also investigated thoroughly, and the results are presented in
detail.

2. POINT INTERPOLATION USING RADIAL FUNCTIONS BASIS

Consider a problem domain X. To approximate a function u (x) in X, the point
interpolant uh (x) is de"ned in the domain X by
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TABLE 1

¹ypical radial basis functions

Name Expression Parameters

Multi-quadrics (MQ) B
i
(x, y)"(r2

i
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Gaussian (Exp) B
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(x, y)"e~br2i b
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with the constraint condition
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where B
i
(r) is the radial basis function, n is the number of points in the neighborhood of x,

p
j
(x) is monomials in the space co-ordinates xT"[x, y], m is the number of polynomial

basis functions and the coe$cients a
i
and b

j
are interpolation constants.

In the radial basis function B
i
(r), the variable is only the distance, r, between the

interpolation point x and a node x
i
. For a two-dimensional problem, r is de"ned as

r"J(x!x
i
)2#(y!y

i
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There are a number of radial basis functions. The characteristics of radial functions have
been widely investigated. As listed in Table 1, the multi-quadrics (MQ) radial function and
Gaussian (Exp) radial function are used in this paper. Several parameters need to be
determined for each radial basis function. In general, these parameters can be determined by
numerical examination. Detailed investigations of these parameters will be given in the
following numerical examples.

The second term of equation (1), introduced in this paper, is a polynomial interpolation
term. It has been proved that this term can improve interpolation accuracy. In equation (1),
only limited number p

j
(x) is su$cient, i.e., m@n. In this paper, the following linear

polynomial basis is used:

pT(x)"[1, x, y]. (4)

Coe$cients a
i
and b

j
in equation (1) can be determined by enforcing equation (1) to be

satis"ed at the n nodes surrounding point x. Equation (1) can be rewritten in matrix form as
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Hence, we have
u(x)"U(x)u

e
, (6a)

where the shape function U (x) is de"ned by

U(x)"[B
1
(r) B

2
(r) 2 B
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(r) 1 x y]G~1 (6b)

and
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The shape function U(x) obtained through the above procedure possesses delta function
properties, i.e.,
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(7)

Mathematicians have proved the existence of B~1
0

for arbitrary scattered nodes [20, 21].
In addition, the order of polynomial in equation (1) is lower (only linear in this paper).
Therefore, in general, G~1 (in equation (6b)) exists.

3. LOCAL WEAK FORM OF LRPIM

The governing equation for no damping free vibration is as follows:

muK
i
#p

ij,j
"0, (8)

where m is the mass density, uK
i
"L2u

i
/Lt2 is the acceleration, p

ij
the stress tensor, which

corresponds to the displacement "eld u
i
, and ( )

j
denotes L/Lx

j
. The auxiliary conditions are

given as follows:
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Essential boundary condition: u
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"uN
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on C

u
, (9b)

in which the uN
i
, tN

i
, denote the prescribed displacements, tractions, respectively, and n

j
is the

unit outward normal to domain X. For free vibration analysis, the essential boundary
conditions are always homogeneous.

In the free vibration analysis, u (x, t) can be written as

u (x, t)"u (x) sin(ut#u), (10)

where u is the frequency. Substituting equation (10) into equation (8) leads to the following
equations:

p
ij,j

!u2mu
i
"0. (11)

It should be noted that the stresses, r, and displacements, u, in equation (11) are only the
function of co-ordinator x.

A local weak form of equation (11), over a local sub-domain X
s
bounded by C

s
, can be

obtained using the weighted residual method
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where w
i
is the weight function.



Figure 1. The support domain X
s
and integration domain X

Q
for node i; the interpolation domain X

i
for Gauss

integration point x
Q
.
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The "rst term on the left-hand side of equation (16) can be integrated by parts to
become
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The support sub-domain X
s
of a node x

i
is a domain in which w

i
(x)O0. An arbitrary shape

support domain can be used. A circle or rectangular support domain is used in this paper
for convenience. From Figure 1, it can be found that the boundary C

s
for the support

domain is usually composed of three parts: the internal boundary C
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, the boundaries C

su
and C
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, over which the essential and natural boundary conditions are speci"ed. Imposing
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For a support domain located entirely within the global domain, there is no inter-
section between C

s
and the global boundary C, C

si
"C

s
, and the integrals over C

su
and C

st
vanish. In the free vibration analysis, the integrals over C

st
vanish for all nodes because of

tN"0 on C
t
.

With equation (14) for any node x
i
, instead of dealing with a global problem

equation (11), the problem becomes to deal with a localized problem over a local support
domain. Theoretically, as long as the union of all local domains, X

s
, covers the global

domain X, the equilibrium equation and the boundary conditions will be satis"ed in
the global domain X and in its boundary C by using above-discussed LRPIM [10].
However, the support domain used will a!ect the solution. The in#uence of the
choice of local support domain will be studied in detail in the following numerical
examples.
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4. DISCRETIZATION AND NUMERICAL IMPLEMENTATION FOR THE LRPIM

4.1. DISCRETE EQUATION OF LRPIM

The problem domain X is represented by properly scattered nodes. The point
interpolation approximation (6) is used to approximate the value of a point x

Q
. Substituting

equation (6) into the local weak form (14) for all nodes leads to the following discrete system
equations:

Ku!u2Mu"0, (15)

where the &&sti!ness'' matrix K and &&mass'' matrix M are de"ned by
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with w being the value of the weight function matrix, U the shape function matrix,
corresponding to node i, evaluated at the point x, and
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for plane stress. (16f )

For free vibration analyses, equation (15) can also be written as

(K!u2M)q"0, (17)

where q is the eigenvector. In order to determine the frequencies, u, and free vibration
modes, it is necessary to solve the eigenvalue equation (17). The essential boundary
condition (9b), can be easy to implement in the same way in the FEM due to shape functions
possessing delta function property.

4.2. NUMERICAL IMPLEMENTATION FOR LRPIM

As the MLPG is regarded as a weighted residual method, the weight function plays an
important role in the performance of the method. Theoretically, as long as the condition of
continuity is satis"ed, any weight function is acceptable. However, the local weak form is
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based on the local sub-domains centered by nodes. It can be found that the weight function
with the local property, which should decrease in magnitude as the distance from a point x

Q
to the node x

i
increases, yields better results. Therefore, we will consider weight functions,

which only depend on the distance between two points. The following spline weight
functions is used in this paper:
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where d
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i
D is the distance from node x

i
to the sampling point x

Q
and r

w
is the size of

the support for the weight function.
It can be easily seen that the system sti!ness matrix K in the present method is banded but

usually asymmetric. However, similar to the Galerkin FE methods, the weight function, w,
can be taken as the same formulation as equation (6). In this case, K becomes symmetrical
[10]. This symmetrical sti!ness matrix can be an added advantage in applying the present
LRPIM method.

A numerical integration is needed to evaluate the integration in equation (16). The Gauss
quadrature is used in the LRPIM. For a node x

i
, a local integration cell is needed to

employ Gauss quadrature. For each Gauss quadrature point x
Q
, the point interpolation

is performed to obtain the integrand. Therefore, as shown in Figure 1, for a node x
i
,

there exist three local domains: local integration domain X
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), weight function
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w will be zero along the boundary of integration domain if the integration domain
and weight domain are same (r
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). Equation (16b) can be simpli"ed because the

integration along the internal boundary C
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vanishes. Hence, for simpli"cation, we
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in this paper. Since the problem domains in the following examples are

rectangle domains, rectangle sub-domains are used for establishing weight function.
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are de"ned as
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where a and b are the coe$cients chosen. The d
i
is the shortest distance between the node

i and neighbor nodes. The e!ects of a and b will be investigated in the following numerical
examples.

There exist di$culties to obtain the exact numerical integration in meshless methods
[10]. An insu$ciently accurate numerical integration may cause deterioration and rank
de"ciency in the numerical solution. The numerical integration errors are results from the
complexities of the integrand. First, the shape functions constructed using the point
interpolation have a complex feature. The shape functions have di!erent forms in each small
integration region. The derivatives of shape functions might have an oscillation. Second, the
overlapping of interpolation domains makes the integrand in the overlapping domain very
complicated. In order to guarantee the accuracy of the numerical integration, the X

Q
should

be divided into some regular small partitions. In each small partition, more Gauss
quadrature points should be used [13].



Figure 2. Cantilever beam.

Figure 3. Nodal distribution of the beam: (a) coarse nodal distribution; (b) regular "ne nodal distribution; and
(c) irregular "ne nodal distribution.
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5. NUMERICAL RESULTS

The present LRPIM is used for free vibration analyses of 2-D solids. Except specially
mentioned, the units are taken as standard international (SI) units in the following
examples.

5.1. A CANTILEVER BEAM

The LRPIM method is "rst applied to analyze free vibration of a cantilever beam as
shown in Figure 2. The problem has been analyzed by Nagashima [22] using another
meshless method, the node-by-node meshless (NBNM) method, which is based on a global
weak form and the MLS approximation. A plane stress problem is considered. The
parameters are taken as length ¸"100 mm, height D"10 mm, thickness t"1)0 mm,
Young's modulus E"2)1]104 kgf/mm2, the Poisson ratio l"0)3, mass density
m"8)0]10~10 kgfs2/mm4. Figure 3 shows three kinds of nodal arrangements, coarse (63
nodes) arrangement, "ne arrangement with regular and irregular distributed 306 nodes.
Parameters on the performance of the present method are investigated "rst. In the following



Figure 4. In#uence of parameter q of MQ on frequencies: , q"!0)5; , q"1)03; , q"0)5.
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parameter investigations, regular distributed 306 nodes (Figure 3(b)) are used. As reference,
results are obtained by FEM software (ABAQUS) using a very "ne mesh with 8000 degrees
of freedom (d.o.f.).

5.1.1. E+ects of radial function parameters

Both multi-quadrics (MQ) radial function and Gaussian (Exp) radial function are used as
basis function in this paper. As shown in Table 1, some parameters (C and q for MQ, b for
Exp) will in#uence the performance of these radial functions [16}18]. C is de"ned as

C"Jc
0
d
i
, (20)

where c
0

is the coe$cient chosen. The d
i
is the shortest distance between the node i and

neighbor nodes.
(a) E+ect of C and q for MQ. In static analyses, it has been found that parameter

q in#uences the performance of MQ more importantly than parameter C. Therefore, q is
investigated "rst. q"0)5 and !0)5 are the traditional parameters in MQ [16}18]. The
parameter of q"1)03 was "rst discovered and examined by Liu et al. [19]. Natural
frequencies for q"!0)5, 0)5 and 1)03 are obtained and compared with the FEM result.
Errors for di!erent q are plotted in Figure 4. From Figure 4, it can be observed that
q"1)03 leads to a better result in the range of studies. Hence, q"1)03 is used in the
following studies.

It has been found that very small or big values of C should not be taken [19]. Therefore,
c
0

in equation (20) is taken as 1)0, 2)0 and 4)0 respectively. Errors in the results of natural
frequency are plotted in Figure 5. From Figure 5, we can "nd that the in#uence of
parameter C is smaller than q. For convenience, c

0
"1)0 will be used in the following

studies.
(b) E+ect of b for Exp. There is only one parameter b in the Exp radial function. For

comparison, b is taken as 0)3, 0)03 and 0)003. Error in the results of natural frequency are
plotted in Figure 6. From this "gure, one can observe that a better accuracy can be
obtained for a smaller b. However, a smaller b leads to a larger condition number in the
system matrix due to the property of the Exp radial function. In our studies, it is found that



Figure 5. In#uence of parameter c
0

of MQ on frequencies: , c
0
"1)0; , c

0
"2)0; , c

0
"4)0.

Figure 6. In#uence of parameter b of Exp on frequencies: , b"0)003; , b"0)03; , b"0)3.
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b"0)003 will lead to an ill-conditioned matrix when a big in#uence domain is used (b*3)5
in equation (19b)). b"0)03 is robust and with acceptable accuracies in the range of cases
studied. b"0)03 will be used in the following studies.

5.1.2. E+ects of local support domain

As the LRPIM is a local meshless method, the size of the local support domain used will
a!ect the accuracy of the solution. Several support domains with di!erent sizes are therefore
investigated. The errors of the frequencies for the "rst three modes are plotted in Figure 7.
From this "gure, it can be found that the accuracy for frequencies increases with the
increase of the support domain size for both MQ and Exp basis.

When the support domain is too small (a"0)5), the results will become unacceptable.
This is because a local residual formulation with very small support domain for the weight
function behaves more like a strong form formulation [23]. Strong form formulation is



Figure 7. In#uence of parameter a of the support domain on frequencies. (a) LRPIM (MQ), (b) LRPIM (Exp):
, mode 1; , mode 2; , mode 3.
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usually less accurate than a weak integral form formulation, where integration smears the
error over the integral domain.

When the support domain is big enough (a*1)5), the results obtained are very good.
However, there exist di$culties to get accurate numerical integrations for a big sub-support
domain. More regular small partitions and Gauss quadrature points are needed. The
numerical integration for a big sub-support domain becomes computationally expensive
and is not really necessary. Hence, a"2)0 is an economic choice.

It may also be mentioned here that very large local support domain does not necessarily
provide a signi"cant improvement on accuracy. This fact is clearly evidenced in Figure 7.
This fact implies that as long as the integral domain is large enough to &&smear'' error, the
size of the integral domain does not play an important role.

5.1.3. E+ects of interpolation domain

The size of in#uence domain of a quadrature point is decided by the parameter b in
equation (19b). Since the problem domain is rectangular, rectangular in#uence domains are



Figure 8. In#uence of parameter b of the in#uence domain on frequencies. (a) LRPIM (MQ), (b) LRPIM (Exp):
, mode 1; , mode 2; , mode 3.
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used. Results of b"1)0}3)5 are obtained and plotted in Figure 8. It can be found that
results of b"1)5}3)0 (about 15}40 nodes used in an in#uence domain) are very good.
A very small in#uence domain (b"1)0) and a very big in#uence domain (b'3)5) lead to
big errors. The poor accuracy of a very small in#uence domain is because there are not
enough nodes (about less than eight nodes) to perform interpolation for the "eld variable.
On the contrary, a very big in#uence domain will increase the numerical error of
interpolation because there are too many nodes (about more than 70 nodes) to perform
interpolation. Therefore, b"1)5}3)0 can obtain an acceptable result. For convenience and
consistency, b"2)0 will be used in the following studies.

5.1.4. Modal analyses results of the beam

Using the above-mentioned parameters, frequencies of two regular distributed nodal
arrangements obtained by LRPIM are listed in Table 2. The results obtained by NBNM
method [22] and a commercial FEM software, ABAQUS, using rectangular elements with
same number of nodes are listed in the same table. From this table, one can observe that the



TABLE 2

Natural frequency (Hz) of a cantilever beam with di+erent regular nodal distributions

Coarse node distribution (63 nodes) Fine node distribution (306 nodes)

Mode
LRPIM
(MQ)s

LRPIM
(Exp)t

Nagashima
[22]

FEM
(ABAQUS)

LRPIM
(MQ)s

LRPIM
(Exp)t

Nagashima
[22]

FEM
(ABAQUS)

FEM
(8000 d.o.f.)

1 888)6 1000)3 926)10 870 824)3 825)8 844)19 830 823
2 5309)6 5034)0 5484)11 5199 4976)6 4958)4 5051)21 4979 4937
3 12829)4 12781)1 12831)88 12 830 12826)5 12826)0 12827)60 12 826 12 824
4 13963)9 13643)8 14201)32 13 640 13093)5 13058)3 13258)21 13 111 13 005
5 25311)2 24993)0 25290)04 24 685 23781)9 23726)3 23992)82 23 818 23 632
6 38463)2 38234)5 37350)18 37 477 36258)3 36179)8 36432)15 36 308 36 040
7 38488)0 38324)5 38320)59 38 378 38451)6 38450)2 38436)43 38 436 38 442
8 52832)6 52727)1 50818)64 51 322 49910)7 49806)8 49937)19 49 958 49 616
9 64012)4 63806)1 63283)70 63 584 63987)8 63985)6 63901)16 63 917 63 955

10 67933)3 68087)4 63994)48 65 731 64334)8 64202)9 64085)90 64 348 63 967

sMQ: q"1)03, c
0
"1)0, a"2)0, b"2)0.

tExp: b"0)03, a"2)0, b"2)0.
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Figure 9. Eigenmodes for the cantilever beam by LRPIM method.
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results of the present LRPIM method are in very good agreement with those obtained using
FE and NBNM methods. The convergence of the present method is also demonstrated in
Table 2. As the number of nodes increases, results obtained by the present LRPIM
approach the FEM results with extremely "ne mesh, which serves as reference. The "rst 10
eigenmodes obtained by LRPIM method are plotted in Figure 9. Comparing with FEM
results and Nagashima's [22] results, almost identical results are obtained. The results
indicate that the LRPIM is as good as those of FEM, which can be considered as a whole
domain residual method. We, therefore, emphasize again that the size of the local integral
domain in the local residual weak form is not important when it is larger than a certain size.

The irregular distribution nodal arrangement, shown in Figure 3(c), is also used for the
modal analysis. Frequencies results are listed in Table 3. From Table 3, one can observe
that very good results are obtained using the irregular distribution nodal arrangement. The
computational stability and high accuracy for a non-structured nodal distribution are very
signi"cant advantages of LRPIM. These properties are very bene"cial for practical
applications of LRPIM.

5.2. A SHEAR WALL

Figure 10 shows a shear wall with four openings, which has been solved using boundary
element method by Brabbia et al. [24]. The problem is solved for the plane stress case with



TABLE 3

Natural frequency (Hz) of a cantilever beam with irregular nodal distribution

Mode LRPIM (MQ)s Error (%) LRPIM (Exp)t Error (%) Nagashima [22] Error (%)
FEM

(ABAQUS) Error (%)
FEM (8000

d.o.f.)

1 820)2 !0)349 815)0 !0)987 844)19 2)565 830 0)841 823
2 4938)4 0)018 4982)8 0)918 5051)21 2)303 4979 0)841 4937
3 12814)3 !0)076 12815)7 !0)065 12827)60 0)028 12 826 0)016 12 824
4 13005)0 0)000 13078)3 0)563 13258)21 1)947 13 111 0)815 13 005
5 23652)2 0)086 23724)0 0)389 23992)82 1)527 23 818 0)787 23 632
6 36096)7 0)157 36230)0 0)527 36432)15 1)088 36 308 0)744 36 040
7 38418)8 !0)060 38423)9 !0)047 38436)43 !0)014 38 436 !0)016 38 442
8 49742)9 0)256 49912)5 0)598 49937)19 0)647 49 958 0)689 49 616
9 63919)6 !0)055 63938)5 !0)026 63901)16 !0)084 63 917 !0)059 63 955

10 64198)3 0)362 64419)2 0)707 64085)90 0)186 64 348 0)596 63 967

sMQ: q"1)03; c
0
"1)0, a"2)0, b"2)0.

tExp: b"0)03, a"2)0, b"2)0.
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Figure 10. A shear wall with four openings.

TABLE 4

Natural frequencies of a shear wall

u (rad/s)

Mode LRPIM (MQ)s LRPIM (Exp)t FEM (ABAQUS) Brabbia [24]

1 2)086 2)090 2)073 2)079
2 7)152 7)133 7)096 7)181
3 7)647 7)645 7)625 7)644
4 12)019 11)987 11)938 11)833
5 15)628 15)617 15)341 15)947
6 18)548 18)508 18)345 18)644
7 20)085 20)087 19)876 20)268
8 22)564 22)518 22)210 22)765

sMQ: q"1)03, c
0
"1)0, a"2)0, b"2)0.

tExp: b"0)03, a"2)0, b"2)0.
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E"1000, l"0)2, t"1)0 and m"1)0. A total of 574 uniformed nodes are used to discretize
the problem domain. The problem is also solved using FEM software ABAQUS. Natural
frequencies of the "rst eight modes are calculated and listed in Table 4. The results obtained
by the present LRPIM are in very good agreement with those obtained using BEM and FEM.
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6. DISCUSSION AND CONCLUSIONS

A local radial point interpolation method (LRPIM) for free vibration analyses of
two-dimensional solids and structures have been presented in this paper. Local weak forms
are developed using weighted residual method locally from the partial di!erential equation
of the free vibration. The point interpolation using radial functions as the basis is used to
obtain the shape functions. The shape functions so formulated possess delta function
property. Therefore, the essential boundary conditions can be easily implemented in free
vibration analyses. Some important parameters on the performance of the present method
are investigated in great detail. From the studies in this paper, the following conclusion can
be drawn:

(1) Using radial function basis in the LRPIM, the point interpolation becomes stable and
#exible for both regular and irregular nodal distributions.

(2) For MQ radial function, q"1)03 and c
0
"1)0, and for Exp radial function, b"0)03

leads to acceptable results for most problems studied.
(3) When the local support domain is big enough (a*1)5), the results obtained are very

good. a"2)0 is recommended.
(4) The size of in#uence domain of b"1)5}3)0 should be used for most problems

studied.
(5) Numerical examples of free vibration analyses are presented to demonstrate the

convergence, validity and e$ciency of the present method. The results presented are
indeed very encouraging. It is demonstrated that the LRPIM is easy to implement,
and very #exible for free vibration analyses in solids and structures.
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